Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stochastic diffusion is the noisy process through which dynamics like epidemics, or agents like animal species, disperse over a larger area. These processes are increasingly important to better prepare for pandemics and as species ranges shift in response to climate change. Unfortunately, modelling is mostly done with expensive computational simulations or inaccurate deterministic tools that ignore the randomness of dispersal. We introduce ‘mean-FLAME’ models, tracking stochastic dispersion using approximate master equations to follow the probability distribution over all possible states of an area of interest, up to states active enough to be approximated using a mean-field model. In the limit where we track all states, this approach is locally exact, and in the other limit collapses to traditional deterministic models. In predator–prey systems, we show that tracking a handful of states around key absorbing states is sufficient to accurately model extinction. In disease models, we show that classic mean-field approaches underestimate the heterogeneity of epidemics. And in nonlinear dispersal models, we show that deterministic tools fail to capture the speed of spatial diffusion. These effects are all important for marginal areas that are close to unsuitable for diffusion, like the edge of a species range or epidemics in small populations.more » « lessFree, publicly-accessible full text available September 1, 2026
-
Epidemic models study the spread of undesired agents through populations, be it infectious diseases through a country, misinformation in social media or pests infesting a region. In combating these epidemics, we rely neither on global top-down interventions, nor solely on individual adaptations. Instead, interventions commonly come from local institutions such as public health departments, moderation teams on social media platforms or other forms of group governance. Classic models, which are often individual or agent-based, are ill-suited to capture local adaptations. We leverage developments of institutional dynamics based on cultural group selection to study how groups attempt local control of an epidemic by taking inspiration from the successes and failures of other groups. Incorporating institutional changes into epidemic dynamics reveals paradoxes: a higher transmission rate can result in smaller outbreaks as does decreasing the speed of institutional adaptation. When groups perceive a contagion as more worrisome, they can invest in improved policies and, if they maintain these policies long enough to have impact, lead to a reduction in endemicity. By looking at the interplay between the speed of institutions and the transmission rate of the contagions, we find rich coevolutionary dynamics that reflect the complexity of known biological and social contagions.more » « less
An official website of the United States government
